
White Paper

The Advantages of Speed and
In-Memory Databases

Overview
In-memory databases are able to store and react to
changes in your data an order of magnitude faster than
even databases that store data on solid state drives,
allowing single thread benchmark speeds of over
140,000 storage operations in under 1 millisecond, and
the same number of reads in under 0.1 millisecond on
consumer grade hardware. This raw speed advantage
enables in-memory databases to address a different
set of use cases like intelligent caching, accelerated
user experiences, and adaptive traffic shaping.

This white paper first analyzes the business value
derived from low latency applications, it then examines
some architectural patterns for in-memory databases,
and finally looks at the leading in-memory database
and our recommendations.

Copyright ©2020, 2021, 2022 Instaclustr, All rights reserved.

info@instaclustr.comwww.instaclustr.com @instaclustr 2

Business Impact
In-memory databases can deliver considerable business value through the simple act of
very quickly storing data that needs to be repeatedly referred to and thereby accelerating
user interfaces (UI) and user experiences (UX). This section will provide a brief overview
of the effect of latency on retail, technology, and other applications to demonstrate there
is considerable value to be gained from accelerating your infrastructure. These potential
gains go beyond in-memory databases and include scaling everything in your data layer
appropriately to maintain application performance.

It takes a human being around a quarter of a second to press a button as soon as they can
after a visual stimulus they’ve been waiting for occurs.1

Visual Reaction Time Data

If about 250 milliseconds is required for this kind of loop—of perception, decision, and
action—then perception alone is occurring much sooner. You can also think of the most
common frame rate of film, 24 individual pictures per second, which creates an effective
illusion of motion by deploying a new picture around every 42 milliseconds.

In 1968 Robert Miller at IBM suggested a series of task and context dependent response
times for user interfaces which included 100 milliseconds for acknowledging an action
while the user is looking at the screen and “no more than one second” before some
readable text is displayed after a “next page” type action.2

1 A scientifically controlled study, of 120 healthy young medical students recorded an average visual reaction time of 247ms.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4456887/ The Human Benchmark website with 81 million data points collected from the public,
variously using computer mice and trackpads, has the average at 284ms and the median at 273ms.
https://humanbenchmark.com/tests/reactiontime/statistics a sample of that data is plotted in the histogram show.
2 https://dl.acm.org/doi/10.1145/1476589.1476628

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4456887/
https://humanbenchmark.com/tests/reactiontime/statistics
https://dl.acm.org/doi/10.1145/1476589.1476628

info@instaclustr.comwww.instaclustr.com @instaclustr 3

Doherty and Thadani, also at IBM, showed large productivity gains from computer system
latency reduction in 1982.3

Productivity and UX Response Time

In their study they also showed “average” users beating “expert” users, and likewise “novice”
users beating “average” users, with only a 250-500 ms latency advantage. All this occurred
in the first 1000 ms of latency identified by the curve above. Large productivity gains were
also shown when latency was reduced for a variety of tasks.

In 1987 Rob Akscyn reported a similar real world usability threshold of 250 milliseconds for
the hypertext systems he had been building.4 In 1993 Nielsen formulated three orders of
magnitude (0.1s, 1s, and 10s) as a rough guide to UIs being perceived as instantaneous,
within someone’s flow of thought, or distracting.5

3 https://jlelliotton.blogspot.com/p/the-economic-value-of-rapid-response.html
4 https://www.eastgate.com/HypertextNow/archives/Akscyn.html
5 https://www.nngroup.com/articles/response-times-3-important-limits/

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://jlelliotton.blogspot.com/p/the-economic-value-of-rapid-response.html
https://jlelliotton.blogspot.com/p/the-economic-value-of-rapid-response.html
https://www.eastgate.com/HypertextNow/archives/Akscyn.html
https://www.nngroup.com/articles/response-times-3-important-limits/

info@instaclustr.comwww.instaclustr.com @instaclustr 4

This research shows the kinds of speeds at which human beings are able to perceive
information visually. Empirical evidence also shows people are much more productive
using computer systems that react closer to their perceptual speed. Below we look at the
copious evidence that latency has a large impact across a number of important business
variables and key performance indicators for consumer facing applications.

Retail and Latency

Online shopping examples are linked very closely to revenue and serve as a great
benchmark of the effects of speed on human decision processes. The variables affected
are revenue, conversions, and bounce rates (people clicking the back button/abandoning
the site).

Amazon found that increasing website latency by +100 milliseconds led to a 1 percent
loss of revenue.6

Walmart found that changing page load times by -1000 milliseconds led to 2 percent
gain in conversions, with a similar effect on revenue as Amazon.7

Etsy found in an experiment that adding weight to their mobile site of +160 kilobytes led to
a 12% increase in the bounce rate of people clicking away from their site.8

Staples changed their median page load time by -1000 milliseconds and specifically
addressed the experience of the 2% of users suffering the largest delays and saw a 10%
increase to conversions.9

Akamai ran an analysis over billions of user sessions, on multiple retail sites, and found the
inflection point for decreased conversions and an increased bounce rate was around 2000
milliseconds.10

Technology Products and Latency

Beyond retail, large technology corporations have looked at the engagement and revenue effects
of latency. Decreased use and traffic, people swapping to other services, conversions, and revenue
all seem to be affected.

Google found that adding 500 milliseconds to search page loads decreased searches by 25%.11

6 http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html and slides by the same author
 https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxnbGluZGVufGd4OjVmZDIzMWMzMGI4MDc3OWM
7 https://www.slideshare.net/devonauerswald/walmart-pagespeedslide
8 http://radar.oreilly.com/2014/01/web-performance-is-user-experience.html
9 https://www.slideshare.net/cliffcrocker/velocity-ny-how-to-measure-revenue-in-milliseconds
10 https://blogs.akamai.com/2017/04/new-findings-the-state-of-online-retail-performance-spring-2017.html
11 http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxnbGluZGVufGd4OjVmZDIzMWMzMGI4MDc3OWM
https://www.slideshare.net/devonauerswald/walmart-pagespeedslide
http://radar.oreilly.com/2014/01/web-performance-is-user-experience.html
https://www.slideshare.net/cliffcrocker/velocity-ny-how-to-measure-revenue-in-milliseconds
https://blogs.akamai.com/2017/04/new-findings-the-state-of-online-retail-performance-spring-2017.htm
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

info@instaclustr.comwww.instaclustr.com @instaclustr 5

Yahoo! found that adding 400 milliseconds of delay to their pages dropped traffic by
9%.12

Bing found that adding 2000 milliseconds of delay to search caused a decrease in
searches of 1.8% and a decrease in revenue of 4.3%.13

For software Mozilla, the makers of the open source Firefox browser, found that removing
2200 milliseconds of delay to a page for downloading their application increased
conversions by 15.4%.14

Information Consumption and Latency

Beyond search or application downloads, engagement on sites that offer text or images for
users to enjoy has also been demonstrated to be highly sensitive to latency.

An experiment at the Financial Times found that adding 1000 milliseconds of delay led to
a 4.9% decrease in pageviews. Similarly adding a 3000 millisecond delay induced a 7.2%
reduction in pageviews.15

Instagram made a number of optimizations to the weight of their pages, which reduced
wait times by 30-70 milliseconds which led to a 0.7% increase in impressions.16

An experiment conducted with the users of The Telegraph showed 4000 milliseconds of
delay caused an 11% reduction in pageviews. Doubling that to 8,000 milliseconds of
delay caused a 17.5% drop in pageviews.17

GQ magazine conducted an overhaul of their slow site and removing 5000 milliseconds of
wait time led to 83% more traffic, 32% more time on the site, and a 108% increase in ad
interactions.18

Gaming and Latency

If shopping, searching, and reading are sensitive to latency it’s not surprising that gaming
is as well. Survey and experimental work on gaming shows that there is a very strong belief
among people that latency affects gaming, and that after 100ms of latency both real-
world scores and reported enjoyment decline starkly.19

12 https://www.slideshare.net/stoyan/yslow-20-presentation
13 http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
14 https://blog.mozilla.org/metrics/2010/04/05/firefox-page-load-speed-part-ii/
15 https://medium.com/ft-product-technology/a-faster-ft-com-10e7c077dc1c
16 https://instagram-engineering.com/performance-usage-at-instagram-d2ba0347e442#.5snxp5z1t
17 https://blog.optimizely.com/2016/07/13/how-does-page-load-time-impact-engagement/
18 https://digiday.com/media/gq-com-cut-page-load-time-80-percent/
19 https://web.cs.wpi.edu/~claypool/mqp/latency-comp/imcneil-mbeyler-mqpreport.pdf

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://www.slideshare.net/stoyan/yslow-20-presentation
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
https://blog.mozilla.org/metrics/2010/04/05/firefox-page-load-speed-part-ii/
https://medium.com/ft-product-technology/a-faster-ft-com-10e7c077dc1c
https://instagram-engineering.com/performance-usage-at-instagram-d2ba0347e442#.5snxp5z1t
https://blog.optimizely.com/2016/07/13/how-does-page-load-time-impact-engagement/
https://digiday.com/media/gq-com-cut-page-load-time-80-percent/
https://web.cs.wpi.edu/~claypool/mqp/latency-comp/imcneil-mbeyler-mqpreport.pdf

info@instaclustr.comwww.instaclustr.com @instaclustr 6

In a study published in 2007 a controlled experiment with a first person shooter game was
conducted with variable frame rates. The different frame rates were:

■ 3, approx. one frame per 333ms
■ 7, approx. one frame per 142ms
■ 15, approx. one frame per 66ms
■ 30, approx. one frame per 33ms
■ 60, approx. one frame per 17ms

Effect of Frames Per Second on Score20

Performance increased in large steps between 3, 7, and 15 frames per second. The
gaps between frames at 15 frames per second finally goes below the 100 ms threshold
identified in other research as being important for instantaneous feeling experiences.
Performance continues to improve with more frames beyond this point, but at a slower
pace.

Take-Aways and the Time Budget

Linear extrapolations cannot be made from any individual case but together these cases
provide a formidable body of evidence showing that users are indeed highly sensitive to
delays, at quite granular levels, across a number of domains.

20 Claypool & Claypool, 2007 https://web.cs.wpi.edu/~claypool/papers/fr/fulltext.pdf

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://web.cs.wpi.edu/~claypool/papers/fr/fulltext.pdf

info@instaclustr.comwww.instaclustr.com @instaclustr 7

Speed has an impact whether users are looking to get work done, purchase a product,
search, download an app, read an article, scroll through a social feed, or play a game.
Large double digital percentage impacts on key business performance measures can be
seen and even incremental improvements of 100 milliseconds can have visible effects on
engagement, conversions, and revenue.

It’s possible to conclude from these cases that many large organizations could gain
significant revenue and small organizations have the potential to accelerate their user
growth and market share by paying attention to any user interfaces, and likely whole user
experiences, that are in any way slow. To a degree this applies across all applications and
data layers beneath them, but it is particularly relevant to in-memory databases situated
directly behind applications and user experiences.

We argue it’s vital to measure and establish a UX time budget for any application sensitive
to these elements. Such a budget ensures that changes, like new features, are evaluated
not just with their potential upside but also with regard to their impact on your time budget.

Measurement can be done simply from literal stopwatches to adding programmatic
timers to various functions and processes. Products like ElasticsearchTM, with Kibana or
Graphana, are popular for ingesting, exploring, and visualizing large amounts of application
performance monitoring (APM) data or user logs. With this data in hand it is important
to remember to not only examine the averages but also to profile the slowest groups of
actions and user experiences. In the next section we consider the most common kinds of
architectural patterns we see in the in-memory database space.

In-Memory Architecture Patterns
In this section we will look at different architectural patterns for the deployment of an in-
memory database. The unique speed of in-memory storage and structures allows not only
for more responsive applications, but for more value to be added without depleting your
limited time budget.

Intelligent Caching

This pattern addresses the problems identified above head on. It is important to make a
distinction between the caching of substantial static resources like images or video files
and the caching of other important objects. Caching an image file might be better achieved
through a web server optimization or even a content delivery network partner. But caching
user sessions, a shopping cart, a list of who’s online, a recommendation, or a user search
can be extremely useful and accelerated with an in-memory database.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 8

In these cases there are always rules about how long something might be cached for,
and rules around what to do when a cache is full. In this sense there is no “dumb caching”
opposed to intelligent caching, only different rules and assumptions about what to do.

As a cache fills up which elements are going to be discarded? Powerful in-memory
databases enable you to have different policies for different aspects of your data. For
example someone’s session data or shopping cart contents might become a candidate for
eviction in a brimming in-memory database under a naive “Least Frequently Used” eviction
policy; however, from a business perspective it would be far better to consider dropping
some of the least used cached search terms on the product search rather than making a
user log-in again or lose their shopping cart.

Having the capacity to explicitly expire data at varying time intervals, make a distinction
between “volatile” keys that are candidates for eviction and more permanent keys, and
configurable expiration policies provide the basis for intelligent caching systems that
automatically adapt to usage patterns and spikes in real-time.

Adaptive Traffic Shaping

Monitoring real-time traffic and adapting to it can be extremely difficult if the traffic is of
high volume. In-memory databases have the speed to allow real-time responsiveness like
enforcing resource limits, e.g. 10 requests per minute per API key on the free tier. This can
be used to permit “burstability” like an “an average of 20 requests per minute with bursts
to 40 requests permitted on the $10 tier”. The inverse of this pattern is that traffic can be
shaped according to resources rather than the users to ensure fixed resources slow down
equally for all users rather than erroring out.

The traffic shaping pattern can be used to make your architecture aware of system load
and sacrifice non-core features adaptively to protect the core user features. This might
involve a miniscule section of your in-memory database holding logs and metrics of the
last 5 seconds, or 5 minutes, that produces a load score. Other pieces of architecture can
then be easily made aware of what they should or shouldn’t be doing when load is high. The
BBC uses this pattern to dynamically turn off non-core parts of their website experience
during large live events.

Certain data structures like approximate counting methods allow you to keep an
(approximate) count of extremely large sets of unique objects in very small spaces in ways
that a simple count (not unique) or list of the items (too large) would be unable to do. It is
important to make sure any database you are considering has the tools and data structures
to address the use cases you might need it for.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 9

Publish/Subscribe

This pattern allows for ephemeral messaging to be pushed out in a highly efficient way.
Publishers push messages to channels, which subscribers listen to. The key element that
makes it ephemeral is that a subscriber is not guaranteed to be listening when a message
is sent.

This pattern is common on gaming platforms for scores and is used where message
efficiency is paramount such as informing friends of users on a gamified learning platform
of a user’s achievement, inviting them to like and encourage. In this case it doesn’t matter
if a percentage of the users are offline, or engaged in a lesson themselves, just that it
reaches some users and they have the opportunity to congratulate their friend and create a
compelling social experience.

Streams and Stream Processing

Explicit stream processing data structures and tooling are relatively new to in-memory
databases. However, it was not an uncommon use case in the previous generations of
in-memory databases. The last generation simply used a list structure to implement queue
(first in, first out) or stack (last in, first out) processing. The problem with queue or stack pro-
cessing is that when processing events failed this was not tracked.

Inspired by the Apache Kafka® project the in-memory database RedisTM has added a far
more robust stream processing architecture which uses “consumer groups”, who sub-
scribe to streams of data and explicitly acknowledge when they “check out” work and when
their work is complete. This addresses the failure case in list based approaches, because
if a consumer crashes it will not mark a parcel of work that it has checked out as complete,
and eventually another consumer can take up the task and finish it.

We still recommend the robust power and durability of Apache Kafka for critical data and
for enterprise grade integrations across a data layer (such as provided by Kafka Connect),
but in-memory stream processing can be used close to the application or the user
interface level to provide delightful ‘non-blocking’ experiences.

An example of this pattern would be the preview of an article you see when you are about
to share an article on social media. Once the URL is detected the platform shows you a
loading bar to indicate processing and behind the scenes the task of getting an article
summary is put on a queue and eventually returns this to the browser. There is no need to
burden a disk based database with this kind of message or to leave the user wondering if
the system has stalled by doing it slowly or via a new page load. The operation is complex
enough, pulling unknown data from the web, that it could crash the process, stream
processing at high speed allows for this to be handled robustly.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 10

Data Persistence

The downside of an in-memory database is linked to the basic properties of Random
Access Memory (RAM) in that it is volatile. Some in-memory databases like Redis mitigate
these downsides through configurable disk persistence, both through binary copies of
what’s in memory and append only logs of commands as they appear “on the wire”.

If you are considering adopting an in-memory database it’s important to understand its
disk persistence options. If a large cache were to be empty after a restart then initially
100% traffic could pass through to the systems behind it and crash them as well. Disk
persistence allows recovery from a crash with an already warm cache which could handle
most of the load protecting your infrastructure. Additionally, the valuable user sessions and
shopping carts mentioned above would persist.

Clustering

A cluster topology can increase the horizontal scalability of an in-memory database be-
yond the RAM size of a single node and enables you to store more. The only draw-back
to cluster topology is the architecture, management, and support elements of this. In this
sense any in-memory database that you insert into critical paths in your data layer requires
engineering thought, and a support story.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 11

Why RedisTM?
Maturity and Popularity

Over the last decade Redis has matured and its properties are well known. In
StackOverflow’s annual survey of developers it is the database technology voted “most
loved” for the last four years in a row. Importantly this is not just a “fun” metric but the
phrasing is calculated from the percentage of users who are currently using the technology
and also plan to use it again.21

On GitHub Redis is four times more followed and “forked” than the nearest competitor,
which is Memcached. On stackshare.io Redis is used five times more frequently in
technology stacks than Memcached. Indeed in StackOverflow’s 2020 survey of over
40,000 professional developers 1 in 5 reported they were using Redis currently with no
other in-memory database even clearing the 1 in 50 threshold to be reported.22

Usability and Featureset

Developers really do love Redis for its elegant design and features.

It’s not simply easy to use; it’s a joy. If an API is UX for programmers, then Redis
should be in the Museum of Modern Art alongside the Mac Cube.23

More than this the versatility of the feature set of Redis enables some of the architecture
patterns above which are simply not possible on other reasonable, but simpler, platforms
like Memcached. There is nothing wrong with these platforms but Redis with a superset of
their features is able to do what they do as well as much more. This versatility is why you will
see Redis not just referred to as a key value or NoSQL server but as a data structure server.

In addition to these structures Redis has also added pub/sub messaging and stream
processing, providing a wealth of options that other in-memory databases lack.

Open Source

Redis, as with all other Instaclustr offerings and recommendations, is open source. Some
providers offer proprietary extensions but our recommendation is always the same on this
point. The data layer is a business input to your application and your value proposition.

21 https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-databases-loved4
22 https://insights.stackoverflow.com/survey/2020#technology-databases-professional-developers4
23 Eric Redmond and Jim Wilson, Chapter 8, Seven Databases in Seven Weeks

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-databases-loved4
https://insights.stackoverflow.com/survey/2020#technology-databases-professional-developers4

info@instaclustr.comwww.instaclustr.com @instaclustr 12

You should want as many of your business inputs to be completely commoditized in a
market with price competition rather than locked to a single vendor where the roadmap,
particularly price, is decided by a single entity. Providers of pure open source don’t have
the capacity to lock in their customers so they have to focus on the only levers available to
them: price, SLAs, and customer happiness.

There are now leading open source technologies for all aspects of the data layer but Redis
is unique in that it has an astonishing market lead with no real proprietary challengers in
the in-memory space. The only proprietary software challenger in the in-memory space
is Redis itself with proprietary extensions, readily replaced with open source software, that
seek to lure customers into a proprietary style single-vendor relationship.

Summary
Miller in 1968 and Nielsen in 1993 agree that human perceptual speed has a threshold
where under 100ms is largely seen as “instantaneous” and that faster is universally better.
Research for the last 50 years and a large number of cross-domain case studies over
the last 20 years, involving billions of real world data points, show that latency cannot be
ignored and excess latency will negatively impact revenue, engagement, and productivity.

We contend that it is vital to measure the speed of user experiences and to have a data
layer that scales to demand without slowing these down. Additionally, there is always a
place in a company’s data layer for a highly adaptable in-memory system with versatile and
easy to use data structures so that you can easily deploy common in-memory architecture
patterns, like intelligent caching and adaptive traffic shaping, on your data flows.

There are many systems which can analyze your logs after the fact, but only a system that’s
operating at much higher speed than the rest of your infrastructure can allow real-time
applications, adaptations and experiences.

In-memory databases can even handle some stream processing although we argue that
this should not be considered a replacement for enterprise grade stream processing,
where other products like Apache Kafka are more robust.

Finally, we believe Redis’s high popularity with developers in use, and its place as the most
popular database people are considering to use again, is a warranted position. Redis is
open source, robust, has an elegant interface and provides a superset of the features
provided by competitors who offer at best similar performance in a far narrower set of
use cases. Finally, Redis has great disk persistence and clustering capabilities which make
it able to be scaled and deployed in high availability scenarios where warm restarts are
required to protect core infrastructure.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 13

About
Instaclustr

© 2021 Instaclustr Copyright | Apache®, Apache Cassandra®, Apache Kafka®, Apache Spark™, and Apache ZooKeeper™ are trademarks of The Apache Software Foundation. Elasticsearch™ and Kibana™ are trademarks for
Elasticsearch BV. Kubernetes® is a registered trademark of the Linux Foundation. OpenSearch is a registered trademark of Amazon Web Services. Postgres®, PostgreSQL® and the Slonik Logo are trademarks or registered trademarks
of the PostgreSQL Community Association of Canada, and used with their permission. Redis™ is a trademark of Redis Labs Ltd. *Any rights therein are reserved to Redis Labs Ltd. Cadence is a trademark of Uber Technologies, Inc.
Any use by Instaclustr Pty Limited is for referential purposes only and does not indicate any sponsorship, endorsement or affiliation between Redis and Instaclustr Pty Limited. All product and service names used in this website are for
identification purposes only and do not imply endorsement.

Instaclustr helps organizations deliver applications at scale through its managed platform for open
source technologies such as Apache Cassandra®, Apache Kafka®, Apache Spark™, Redis™,
OpenSearch®, PostgreSQL®, and Cadence.

Instaclustr combines a complete data infrastructure environment with hands-on technology expertise
to ensure ongoing performance and optimization. By removing the infrastructure complexity, we
enable companies to focus internal development and operational resources on building cutting edge
customer-facing applications at lower cost. Instaclustr customers include some of the largest and
most innovative Fortune 500 companies.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://www.instaclustr.com/platform/managed-apache-cassandra/
https://www.instaclustr.com/platform/managed-apache-kafka/
https://www.instaclustr.com/platform/managed-apache-spark/
https://www.instaclustr.com/platform/managed-redis/
https://www.instaclustr.com/platform/managed-opensearch/
https://www.instaclustr.com/platform/managed-postgresql/
https://www.instaclustr.com/platform/managed-cadence/

